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Absolute wavelength measurement
of the Lyman-α transition of
hydrogen-like silicon

J. Tschischgale, D. Klöpfel, P. Beiersdorfer, G.V. Brown,
E. Förster, H. Schulte-Schrepping, and S.B. Utter

Abstract: The wavelengths of the 1s1/2–2p1/2 and 1s1/2–2p3/2 Lyman-α transitions have been
measured in hydrogenic silicon with an accuracy of 70 ppm. The measurement was carried
out with an electron-beam ion trap with a calibrated double-faced monolithic crystal that
enabled absolute measurements of the transition wavelengths. The values for the Lyman-α

wavelengths areλLyα1 = 6.180 49(44) Å and λLyα2 = 6.185 56(66) Å. The wavelengths are in
good agreement with calculations and allow a determination of the 1s Lamb shift to within
28% in a region that has received little experimental attention.

PACS Nos.: 32.30Rj, 31.30Jv

Résumé : Nous avons mesuré avec une précision de 70 ppm les longueurs d’onde des
transitions Lyman-α, 1s1/2–2p1/2 et 1s1/2–2p3/2, dans du silicium de type hydrogène (Si+13).
La mesure utilisait un piège ionique à faisceau d’électrons avec un monocristal à deux faces
calibrées permettant des mesures absolues des longueurs d’onde des transitions. Les valeurs
obtenues sontλLyα1 = 6,180 49(44) Å etλLyα2 = 6,185 56(66) Å. Les longueurs d’onde sont
en bon accord avec les valeurs calculées et permettent de déterminer le déplacement de Lamb
à 28 % près dans une région qui a été peu explorée expérimentalement.

[Traduit par la Rédaction]

1. Introduction

Precision measurements of the Lyman-α wavelengths allow the determination of the so-called Lamb
shift. The Lamb shift, discovered by Lamb and Retherford [1] and first explained by Bethe [2], is the sum
of nuclear size effects and contributions from quantum electrodynamics (QED). It scales as(αZ)4/n3,
whereα is the fine-structure constant,Z is the atomic number, andn is the principal quantum number.
As a consequence, the shift is largest for transitions involving the 1s level [3].
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Measurements that determined the size of the Lamb shift of the 2p → 1s (Lyman-α) transitions
have been performed for a great number of hydrogen-like ions [4]. Most of these were made at heavy
accelerators, focussing on high-Z ions. Between He+ andAr17+, i.e., elements for which the Lamb shift
accounts for less than 1 eV of the 2p → 1s transition energy, only few measurements have been made.
In fact, until recently [5], there were no measurements of the Lamb shift of the 2p → 1s transitions in
highly charged ions below sulfur (Z = 16).

The Lyman-α transitions of hydrogen-like ions with atomic number below sulfur fall in the soft-
X-ray region and have wavelengths above 5 Å. Accurate measurements of such soft-X-ray transitions
are now possible by combining several techniques developed during the past few years. These include
the use of the electron-beam ion trap for precision QED studies [6–8], the implementation of high-
resolution soft-X-ray spectrometers [9], and the development of absolutely calibrated crystals with an
appropriately large lattice spacing [10]. This combination of techniques was applied successfully to a
measurement of the Lamb shift of the Lyman-α transitions in hydrogen-like Mg11+ [5]. The use of a
calibrated crystal means that the measurement can be carried out without resorting to external calibration
standards during the measurement. This eliminates systematic errors introduced by geometrical effects,
i.e., problems caused by the fact that external calibration sources fill the X-ray optics differently than
X rays from the ions in the trap, which can greatly complicate the analysis and may lead to unknown
systematic errors [11,12].

In the following, we present a measurement of the silicon Lyman-α1,2 transitions (2p3/2 → 1s1/2,
2p1/2 → 1s1/2). The measurement was carried out at the Lawrence Livermore National Laboratory
(LLNL) electron-beam ion trap (EBIT–II), which is the second such device constructed. Unlike the
earlier measurement of Mg11+, which employed two separate, small, optically coupled crystals, the
present measurement utilizes a large, monolithic crystal with two reflecting faces cut from a single
block of material.

The Lamb-shift contribution to the two silicon Lyman-α transitions was calculated by Johnson and
Soff [13] to be 0.48 eV. This is 0.026% of the total transition energy. The present measurement tests
this prediction within 28%.

2. Experimental setup

A detailed description of the physical properties of the Livermore electron-beam ion trap used to
produce hydrogen-like silicon ions was given in refs. 14 and 15. Silicon was injected using a metal vapor
vacuum arc (MeVVA) [16], which sputtered ions out of a silicon–magnesium alloy. The silicon ions
were generated by electron impact ionization, which could be controlled by the electron-beam energy.
X rays radiated from excited ions were observed through radial ports.

EBIT–II provides a stationary, Doppler-free line source with a diameter of less than 70µm. The ion
temperature has been estimated to be about 300 eV [9] for the present conditions.

The measurement was performed with a vacuum crystal spectrometer employing a monolithic silicon
crystal with the reflex (111). The dimensions of the crystal were 53 mm (length) by 45 mm (width) by
39 mm (height). As described in ref. 10, the main idea behind using a monolithic crystal was based on
a proposal by Uhler and Cooksey [17–19] to determine wavelengths without the need of a calibration
source. This idea was improved by Förster et al. [20, 21] by replacing the shift of the detector with a
displacement of crystal planes of a double-faced monolith, which can be measured more precisely. The
arrangement used for our measurement is illustrated in Fig. 1. The distance between the crystal surfaces
L was measured to beL = 44.972 mm with an accuracy of�L/L = 1.6 × 10−4.

To make an absolute wavelength measurement, the lattice spacing of the crystalline layers needs to be
calibrated in a comparison with well-known wavelength standards.This was done in a three-step process.
First, the lattice spacing of a reference crystal was calibrated at PTB Braunschweig, Germany, using
optic-interferometric and X-ray-interferometric measurements in a comparison to optical wavelength
standards [22]. Second, the reference crystal was used to calibrate a Bond diffractometer at the University
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Fig. 1. Schematic of the monolith setup: (a) side view, (b) top view. The Bragg reflection of a sourceS at the front
and at the back surface of the monolith results in two images on the detector separated by the distancea.

of Jena, Germany [23, 24]. The determination of the lattice spacing was done in step three, using the
same Bond diffractometer. With this procedure, the lattice spacingd was measured absolutely in SI units
with an accuracy better then 1 ppm, i.e.,d = 3.13 557 79 Å with an accuracy of�d/d = 9.6 × 10−7.

X-rays coming from the line source are reflected at the front and back face of the monolith. As a
result, one can see two almost identical spectra on the detector, whose separationa depends only ond,
L, the angle between the detector and the crystal surfaceζ , and the Bragg angle�. Generalizing the
expressions given in refs. 10 and 5 to includeζ the dependence of the Bragg angle on the geometrical
properties becomes

sin(�) = 2L + a sin(ζ )√
4L2 + 4La sin(ζ ) + a2

(1)

This angle cannot be used directly with Bragg’s law to determine a wavelength, since the refractive
index of the crystal differs slightly from the one in vacuum and depends on the X-ray wavelength.

Crystals have the property of being less dense than a vacuum for X-rays. The index of refractionn

can be written as

n = 1 − δ(λ) (2)

whereδ(λ) is the wavelength-dependent deviation from unity and is of the order of 10−4. The measured
wavelength can be expressed with the correction of the refractive index and (1) in a Taylor series ofδ as

λ = 2d ×
(

sin(�) − δ

sin(�)

)
(3)

δ(λ) was calculated for many of the elements by Henke et al. [25] and can be expressed in the energy
range of the silicon Lyman-α doublet (λ ∼ 6.18 Å) as

δ(λ) = δ0 + λ × δ1 (4)

whereδ0 = 3.367 96× 10−5 andδ1 = 1.126 93× 10−5 Å.
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Fig. 2. Spectrum of silicon Lyman-α1,2 X-ray events on the detector. The difference in relative height can be
explained by the absorption of X-rays, reflected by the back face of the crystal, by an aluminum bar in front of the
entrance window of the detector.

With this, (3) can be solved and an error estimate can be obtained, allowing a selection of parameters
to increase the resolution of the setup
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It can easily be seen that all errors caused by geometry disappear at the Bragg angle� = 90◦. The errors
caused by the refractive index are one order of magnitude smaller than the error of the lattice-spacing
measurement.

For the silicon Lyman-α X-rays and our silicon monolith the Bragg angle is about� ∼ 80◦.
According to the estimate above, this minimizes all geometrical errors to about 3% of their nominal
value.

The spectrometer employed a one-dimensional position sensitive gas proportional counter. Since
the determination of wavelengths depends on the separation of the shifted spectra on the detector, the
spatial response of the detector had to be calibrated very accurately. The calibration was done with
an55Fe source using a 100µm slit in front of the detector. The slit was moved with a high-precision
micrometer drive to cover the spatial extent of the Lyman-α spectrum in 27 steps each 1 mm apart.
The dependence of source position on the channel number of the detector was fitted with a third-order
polynomial. A correction for temperature effects was necessary. The calibration was done at an average
room temperatureTR. The high-precision micrometer drive is made of steel and was calibrated at a
temperature of 293 K. During measurement, the temperature of the detectorTM was even higher, since
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the preamplifier heated up the detector in vacuum because of reduced heat conduction. The detector,
made of aluminum, expanded during the measurement. The corrected distanceak at the temperature of
the measurement can be calculated with the linear expansion coefficient of steelαst and aluminumαAl

ak = a × (1 + αAl (TM − TR) + αst(TR − 293 K)) (11)

The correction is on the order of�a/a = 2 × 10−4, which is significant for the results.
Another correction had to be made for the thermal expansion of the lattice spacingd and of the

distanceL of the crystal. The temperature of the crystal in vacuum was monitored during the experiment.
The correction is about�d/d = �L/L = 7 × 10−6.

3. Measurement and analysis

The measurement was done using event mode counting [26], which meant that for every event
measured in the detector, the position in the detector, the pulse height of the X-ray signal, and the timing
cycle of EBIT were recorded. This allowed uninteresting energy regions and times of the EBIT cycle
before ionization starts to be gated out. The resulting spectrum of the silicon Lyman-α transitions is
shown in Fig. 2.

The profile of the lines measured on the detector is a convolution of the natural line profile, the finite
size of the source, the Doppler broadening, the rocking curve, the spectral aberrations of the spectrometer
geometry, and the spatial resolution of the detector. A detailed discussion of these influences was made
by Härtwig and Großwig [27].

Because of the influence of the spectral aberration and the rocking curve, which can be described as
a Lorentzian [28], the line profile on the detector is expected to be a Lorentz profile. The Gauss-shaped
broadening of the lines caused by the detector resolution is estimated to be much smaller than these
effects. Contributions resulting from the source dimensions are negligibly small.

In contrast to this expectation, the best-fit function is a Gauss profile. The fit was done using a
weighted Levenberg–Marquardt method to determine the peak position. The fact that a Gauss profile
provides the best fit to the data shows that Doppler broadening is the dominant line-broadening mech-
anism. A line width of 0.65 eV is determined. The deconvolution with the known rocking curve of the
crystal leads to a contribution of 0.52 eV from Doppler broadening. This corresponds to an ion temper-
ature of 304 eV, which is reasonable when compared with the ion temperature measured on EBIT–II
before [9,29].

Table 1 shows the errors of the measurement. The final wavelengths of the silicon Lyman-α1,2
transition were determined to be 6.180 49(44) Å for Lyman-α1 and 6.185 56(66) Å for Lyman-α2. This
compares to 6.180 43 Å and 6.185 84 Å, respectively, calculated in ref. 13.

4. Discussion

Together with the earlier mesurements of Mg11+ the present measurements show that the soft-X-
ray region is amenable to measurements that are absolutely calibrated. An arrangement with external
calibration sources is not necessary, avoiding hard to assess systematic errors, such as those described
by Chantler et al. in measurements of hydgrogen-like V22+ and helium-like V21+ [11, 12], caused by
the fact that external X-ray sources illuminate the X-ray optics differently than the X rays from the
trapped ions.

The contributions to the Lamb shift can be calculated by subtracting the Dirac eigenvalue for a
point nucleus [13] from the transition energy. The results are 4028± 1132 cm−1 for Lyman-α1 and
3167±1616 cm−1 for Lyman-α2. This compares with 3577 cm−1 and 3892 cm−1 calculated in ref. 13.
A graphical comparison is shown in Fig. 3. Similar to the values measured for the neighboring elements,
the present values are in good agreement with the values calculated by Johnson and Soff [13].
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Table 1. Contributions to the measure-
ment uncertainties. The main uncertainty
results from determining the separation
of the lines on the detector. 85% of this
uncertainty is from the fit and 15% is
from the detector calibration.

Lyman-α1 Lyman-α2

�λ

λ
(2d) 9.6 × 10−7 9.6 × 10−7

�λ

λ
(δ1) 2.9 × 10−8 2.9 × 10−8

�λ

λ
(δ0) 2.9 × 10−8 2.9 × 10−8

�λ

λ
(L) 4.6 × 10−6 4.3 × 10−6

�λ

λ
(a) 6.0 × 10−5 9.4 × 10−5

�λ

λ
(T ) 4.0 × 10−6 4.0 × 10−6

�λ

λ
(ζ ) 1.8 × 10−6 4.6 × 10−6

∑
7.0 × 10−5 1.0 × 10−4

Fig. 3. Comparison of measured and calculated Lamb-shift contributions: (a) Lyman-α1 and (b) Lyman-α2. Theo-
retical values (conntinuous lines) are from ref. 13. Values for Si13+ are present measurements. The data for Mg11+

are from ref. 5, for S15+ are from ref. 33, for Cl16+ are from refs. 34–36, and for Ar17+ are from refs. 37–39. Error
bars represent one-sigma confidence limits.
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The development of accurate wavelength measurements of soft-X-ray transitions may also benefit
Lamb-shift determinations of transitions in ions with very high atomic numbers. Several 2p3/2 → 2s1/2
transitions in lithium-like ions (Ir74+, for example) fall in the same wavelength band as Mg11+ or Si13+.
These transitions are strongly affected by QED [30]. In fact, the QED contributions are much higher
than those of the Lyman transitions in this wavelength band, making them very interesting for testing
atomic theory [31, 32]. The present results show that absolute measurements of these transitions are
possible provided similar X-ray count rates as in the present measurement can be achieved.
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